Advances in Time-to-Event Analyses in Clinical Trials University of Pennsylvania, 2023

Panelist: Mei-Cheng Wang, Department of Biostatistics, Johns Hopkins University

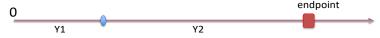
Congratulations to Devan, Lu, Zhenzhen and Fan!

This discussion:

- will focus on use of multiple endpoints in clinical trials.
- Comments mainly related to presentations of Devan Mehrotra and Lu Tian.

Lu Tian's work

Analyzing duration of response (DOR)



 Y_1 : time to response; Y_2 : DOR

If $Y_1 < T$ then $T = Y_1 + Y_2$. If $Y_1 \ge T$ then $Y_1 = \infty$.

T: time to endpoint

 $C\colon \mathsf{censoring}\ \mathsf{time}$

- Induced informative censoring:
 - The censoring time for Y_2 is $\max\{C-Y_1,0\}$. If Y_1 is correlated with Y_2 then the observation of Y_2 is subject to informative censoring.
- Standard Kaplan-Meier estimation is biased. Lu Tian presented bias-corrected estimation of $S_{Y_2}(t)$ (same as Lin-Ying estimator.).
- Huang and Louis (1998, Biometrika): Joint estimation of a survival function and mark variables.
 - Mark variable could be DOR, medical cost, biomarker measurement, etc.

Devan Mehrotra's work

Analyzing composite or multiple endpoints

 Y_i : the jth gap time

 $T_j = Y_1 + ... + Y_j$: time to jth endpoint

t: time since 0

Data example: CV death, Non-fatal stroke, Non-fatal MI, Coronary revasc≥30 days after randomization, Unstable angina

 Prentice, Williams & Peterson model (1981) assume the jth endpoint occurs with the hazard

$$\lambda_{j}(t - t_{j-1} \mid X, N^{H}(t^{-})) = \lambda_{0j}(t - t_{j-1})exp\{\beta'_{j}X + \phi(N^{H}(t^{-}))\}$$

 $\lambda_{0j}(\cdot)$: baseline hazard function. $N^H(t^-)$: history of events prior to t

Can PWP Model be used in clinical trials?

 Y_j : the jth gap time; $T_j = Y_1 + \ldots + Y_j$: time to jth endpoint

For the purpose of testing, need simplification:

$$\begin{split} & \lambda_{j}(t-t_{j-1} \mid X, N^{H}(t^{-})) = \lambda_{0j}(t-t_{j-1})exp\{\beta'_{j}X + \phi(N^{H}(t^{-}))\} \text{ to } \\ & \lambda_{j}(t-t_{j-1} \mid X, N^{H}(t^{-})) = \lambda_{0j}(t-t_{j-1})exp\{\beta'_{j}X\} \end{split}$$

- it requires that each gap time carries NO memory from the event history!
- PWP considered ordered endpoints so λ_j has concrete meaning; e.g., HIV AIDS -Death What does λ_j mean if multiple endpoints have arbitrary order? (CV death, Non-fatal stroke, Non-fatal MI, etc.)
- Competing risks issues: Since 'death' must be part of censoring for other endpoints, what type of hazards is PWP model estimating? - Cause-specific hazard
- If PWP model estimates cause-specific hazards, does the hazard provide proper causal interpretation for clinical trials?

Statistical approaches

Anderson-Gill approach: The AG model assumes constant intensity ratio; the multiple event process does not carry memory:

$$\lambda(t \mid N^H(t^-), X) = \lambda_0(t) exp\{\beta'X\}$$

- AG model is similar to a Poisson process; 'memoryless' is a very strong assumption!
- Does not handle absorbing event such as death.
- Wei-Lachin, Brown, Kost-McDermott, Stouffer, Lachin-Bebu approaches: Cox PH model for each component, average resulting HR estimates with differential weights.
 - Conceptually, better than PWP and AG approaches.
 - In the presence of CV-death, the hazard for other multiple events (Non-fatal stroke, Non-fatal MI, etc.) are cause-specific hazards.
 - Are we comfortable with the use of cause-specific hazards to evaluate trial effects?

Statistical approaches

- Win ratio statistic: Aggregate pairwise subject-level between-treatment comparison of survival times based on sequential order of endpoint importance (Pocock et al., 2012).
 - The win ratio statistic is simple in its format but hard to understand.
 - Fortunately, in semi-competing risks setting, the aim of hypothesis testing has been clarified to test on the observable part of the hazards of latent variables; see Luo et al. (Biometrics, 2015) and Mao Lu (2021).
 - Analysis results possess causal interpretation!
- Claggett et al. approach: Quantify mean cumulative count of events over time using AUC to compare treatments. AUC is an overall summary measure of all the events.
 - Conceptually, this is an appropriate approach in the presence of multiple endpoints (including death).
 - Analysis results possess causal interpretation!
 - Why worst performance in simulation?

